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CHAPTER 9 -- ROTATIONAL   MOTION   II

9.1)  A sketch for this set-up is shown to the
right, complete with f.b.d. for the forces acting on
the system.  Notice that although the frictional
force acts everywhere on the axle, it provides
nothing more than a torque on the system.  For
that reason, we can assume that the net frictional
force acts at one place only (it doesn't matter how
it's oriented--x and y components aren't relevant
when determining torques).   Also, the normal
force N at the pin, which does not provide a torque
to the system, cannot be vertical as F has x and y
components that N must counter.

a.)  The request for the magnitude of the
angular acceleration should bring to mind
N.S.L. Using the rotational counterpart of
that law and assuming the pulley is a disk whose Icm = (1/2)mR2, we get:

  
∑ Γ pin :

    Γ f   +  ΓF =          I          α

       f(.2R) - FR = - [(1/2)MR2] α.

Dividing out an R yields:

 (7 nt)(.2) - (12 nt) = -.5(8 kg)(.6 m)α
                    ⇒    α = 4.42 rad/sec2.

b.)  The relationship between the rotating object's angular acceleration
α  and the instantaneous translational acceleration a of a point (2/3)R from
the axis of rotation is a = rα .  Noting that r is numerically equal to (2/3)R,
but that r's units are meters/radian, we get:

a = r α
   = (2R/3)α
   = .67(.6 m/rad)(4.42 rad/s2)
   = 1.78 m/s2.

c.)  The rotational counterpart to Newton's Second Law, written in
terms of angular momentum, is "the sum of the torques equal to the change
of the angular momentum with time," or Γ net = ∆ L/ ∆ t.  Using this:
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∑ Γ pin :

Γ f   +  ΓF =     ∆ L     / ∆ t
             f(.2R)  -  FR = (L5 - L0) /  t.

As the initial angular momentum is zero (the wheel is initially at rest),
multiplying both sides by t gives us:

     [(7 nt)(.2)(.6 m) - (12 nt)(.6 m)]t = L5
              ⇒     L5= [(7 nt)(.12 m) - (7.2 nt.m)][5 sec]

              = -31.8 kg.m2/s.

Note:  The negative sign means the rotation is clockwise.

d.)  Using the rotational form to angular momentum, we know that L =
I ω .  Using that relationship to determine the angular velocity at t = 5
seconds, we find:

L5 = Iω5
     ⇒     ω5= L5/(.5MR2)

         = (-31.8 kg.m2/s)/[.5(8 kg)(.6 m)2]
         = -22.08 rad/sec.

e.)  Whenever you are asked to determine an angular VELOCITY,
think conservation of energy (at least to start).  Note that whereas the work
done by a force F as a body displaces a distance d is F.d (equal to Fd if the
force and displacement are in the same direction), the work done by a
torque Γ  applied through an angular displacement ∆ θ  will be Γ ∆ θ
(remember, planar rotation is one-dimensional).  Friction-produced torques
will always do negative work.  Torques that make a body's angular velocity
increase will do positive work; those that make a body's angular speed
decrease will do negative work.  Keeping this in mind, the conservation of
energy implies:

       ∑ KE1 +   ∑ U1 +        ∑ Wext          =    ∑ KE2   + ∑ U2
  0    +      0     + [-Γ f ∆θ  + ΓF ∆θ ] = (1/2)Iω5

2 +   0

[[-(.2R)f]∆θ  + FR ∆θ ] = .5(.5MR2)ω5
2
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[-(.2)(.6 m)(7 nt)(55.15 rad) + (12nt)(.6 m)(55.15 rad) = .25(8 kg)(.6 m)2 ω5
2

⇒     ω5
2 = 487.16 rad2/sec2

⇒      ω5
 = 22.07 rad/sec.

Note:  Remember, the conservation of energy yields magnitudes only.

f.)  Using rotational kinematics while knowing that the initial angular
velocity is zero and the angular acceleration is 4.4 rad/sec2, we get:

∆θ  = ω1t + (1/2)αt2

     =  0    + .5(4.42 rad/s2)(5 s)2

     = 55.25 rad. ( . . . close enough).

g.)  Using kinematics:

ω5 = ω1 +           αt

     =  0  + (4.42 rad/s2)(5 s)
     = 22 rad/sec                        ( . . . close enough).

9.2)  The thing to remember whenever you have a massive pulley is that the
tension on either side of the pulley will be different.

a.)  This is a Newton's Second Law problem.
F.b.d.'s are shown to the right and on the next
page, and N.S.L. is presented below (notice that
you end up needing FIVE independent
equations to solve this problem):

for mass m1:

  
∑ Fy :

N - m1g = m1ay = 0      (as ay =0)
⇒    N = m1g.

  ∑ Fx :

- µ kN + T1 = m1a
⇒    T1 = m1a + µ km1g.
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Note:  This presents a problem.  We don't want the acceleration a of the
mass m1, we want the angular acceleration α  of the pulley.  We need a
relationship between those two quantities.  Noticing that the string's acceleration
a is that of m1 and the string's acceleration is also the acceleration of a point on

the pulley's circumference, we can use the relationship a = Rα  for the job.  Doing
so yields:

T1 = m1   a    + µ km1g
T1 = m1(R α)+ µ km1g.

for mass mh:

  
∑ Fy :

T2 - mhg= -mha
⇒    T2 = -mh   a     + mhg
⇒    T2 = -mh(R α) + mhg.

T1

N

m  gp
T2

for the pulley:

  
∑ Γ pulley axis :

ΓT1
  -  ΓT2 

=    -   I p       α

          T1R  - T2R = - [(1/2)MpR2]α.

Note that the negative sign in front of the I p α
term denotes that the α  term is a magnitude and the unembedded sign is
designating a clockwise angular acceleration.  Dividing out an R yields:

T1  - T2 = - [(1/2)MpR] α.

Substituting the expressions for T1 and T2 we get:

   T1   -                T2   = -[(1/2)MpR] α
[m1(R α)+ µ km1g ]   - [-mh(R α) + mhg ]  = -[(1/2)MpR] α
    ⇒      α = [- µ km1g  + mhg] / [m1R + mhR + .5MpR].

Put in the numbers and you should come out with 29.32 rad/sec2.
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b.)  The acceleration of a point on the edge of the pulley (this is also the
acceleration of the string which, in turn, is the acceleration of the hanging
mass), is a = rα , where r in this case is the radius R of the pulley and α  is
provided from Part a above.  Doing the work yields:

a = Rα
    = (.1875 m/rad)(29.32 rad/sec2)
    = 5.5 m/s2.

c.)  The total work done by all the tension forces in the system equals
zero.  Noting that, the conservation of energy yields:

∑ KE1 +   ∑ U1 + ∑ Wext =                  ∑ KE2                                + ∑ U2
  0    + mhgh  +  (-fh)    = [(1/2)m1v2 + (1/2)mhv2+ (1/2)Icmω2] +   0.

Noting that the velocity of a point on the pulley's circumference will equal v,
and that v = Rω , and the frictional force is µ kN = µ km1g, we can write:

  mhgh = [(µ km1gh) + (1/2)m1(R ω )2 + (1/2)mh(Rω )2+ (1/2)[Icmω2].

Rewriting this, eliminating the units (for space):

     (1.2 )(9.8)(1.5) = (.7)(.4)(9.8)(1.5) + .5(.4)(.1875)2 ω2 + .5(1.2)(.1875)2ω2 + .5[1.4x10-3]ω2

    ⇒     ω  = 21.66 rad/sec.

d.)  Noting that the string will have a velocity equal to that of both m1
and mh AND to a point on the circumference of the pulley, we can relate the
angular velocity of the pulley and the string's velocity by v = Rω .
Remembering that the units for R in this usage are "meters/radian," we get:

v = Rω
   = (.1875 m/rad)(21.66 rad/sec)
   = 4.06 m/s.

e.)  This is a trick question.  The acceleration is going to be the same no
matter how far the hanging mass has fallen.  The answer was derived in
Part b.



540

T

m  g
b

H

V

T sin 0

m  g
h

0

T cos 0

0

f.) Angular momentum is defined rotationally as L = Iω .  With that we
get:

L = I ω
    = [(1/2)mpR2]ω

    = .5(.08 kg)(.1875 m)2(21.66 rad/sec)
    = .03 kg.m2/s.

9.3)  An f.b.d. for the beam is shown below.

a.)  This is a rigid body (i.e., equilibrium) problem.  The easiest way to
get the tension in the line is to sum the torques about the pin (that will
eliminate the need to deal with H and V and will additionally give you an
equation that has only one unknown--the T variable you are looking for).

Note:
--Call the distance between the pin and the cable's connection to the beam d

= (2/3)L, where L is the beam's length.
--The angle between T and d is 90o which means the torque due to T about

the pin will be Td sin 90o = T(2/3)L.
--The distance between the pin and the

hanging mass's connection to the beam is L.
--The component of L perpendicular to

the line of the hanging mass (i.e., r-
perpendicular) will be L cos 30o (this is like
determining the shortest distance between
the pin and the line of the force). That means
the torque provided by the hanging mass will
be (mhg)Lcos 30o.  As this torque will try to
make the beam rotate clockwise, it is a
negative torque.

--The beam's mass can be assumed to be
located at the beam's center of mass at L/2.

Putting all this together, N.S.L. yields:

   
  
∑ Γ pin :

ΓT      +  Γmh
       +           Γmb             

= 0     (as α =0)

      T[(2/3)L] - (mhg)Lcos 30o - (mbg)(L/2)cos 30o = 0.
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Canceling the L's and solving for T, we get:

           T = [(mhg)cos 30o + (mbg)(.5)cos 30o]/(2/3)

  = [(3 kg)(9.8 m/s2)(.87) +(7 kg)(9.8 m/s2)(.5)(.87)]/[.67]
  = 82.7 nts.

Knowing T, we can sum the forces in the x and y directions to determine
H and V.  Doing so yields:

  ∑ Fx :

-T cos 60o + H = max
   = 0      as ax = 0.

     ⇒    H = T cos 60o

      = (82.7 nt)(.5)
      = 41.35 nts.

  
∑ Fy :

  T sin 60o + V - mhg - mbg = may
    = 0      (as ay = 0)

⇒    V = -T sin 60o + mhg + mbg

 = -(82.7 nt)(.87) + (3 kg)(9.8 m/s2) +  (7 kg)(9.8 m/s2)
 = 26.05 nts.

Note:  If there had been a negative sign in front of the 26.05 newtons, it
would have meant that we had assumed the wrong direction for the force V.  The
magnitude would nevertheless have been correct.

b-i.)  The moment of inertia about an axis other than one through the
center of mass but parallel to an axis of known moment of inertia that is
through the center of mass is determined using the Parallel Axis Theorem.
The moment of inertia about the beam's pin is:

Ip =      Icm        +     mh2

       = (1/12)mbL2 + mb(L/2)2

    = (1/3)mbL2

    = (1/3)(7 kg)(1.7 m)2

    = 6.74 kg.m2.
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b-ii.)  The moment of inertia of a point mass (i.e., the hanging mass) r
units from a reference axis (note that r = L in this problem) is:

Ihm = mr2

       = mhL2

       = (3 kg)(1.7 m)2

       = 8.67 kg.m2.

b-iii.)  The total moment of inertia about the pin is the beam's moment of
inertia about the pin added to the hanging mass's moment of inertia about
the pin, or:

Itot,pin =         Ip          +        Ihm
 = (6.74 kg.m2) + (8.67 kg.m2)
 = 15.4 kg.m2.

c.)  Angular acceleration--think N.S.L.  Summing up the torques about
the pin (the beam is executing a pure rotation about the pin--no reason to
sum torques about any other point) and putting that equal to the moment of
inertia ABOUT THE PIN times the angular acceleration about the pin yields:

  
∑ Γ pin :

ΓT      +  Γmhm
     +            Γmb             

= Itot,pin α

      T[(2/3)L] - (mhg)Lcos 30o - (mbg)(L/2)cos 30o = Itot,pin α.

The line has been cut (which means T = 0) and we know the total moment of
inertia about the pin from above.  Using this we get:

      ΓT    +     Γmh
       +           Γmb               

=       Itot,pinα

           0     - (mhg)Lcos 30o - (mbg)(L/2)cos 30o = -(15.4 kg.m2)α.

Solving for α  we get:

  α = [(mhg)Lcos 30o + (mbg)(L/2)cos 30o)]/(15.4 kg.m2)

      = [(3 kg)(9.8 m/s2)(1.7 m)(.87) + (7 kg)(9.8 m/s2)(.85 m)(.87)]/(15.4 kg.m2)
 = 6.11 rad/sec2.
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d.)  Knowing the angular acceleration of the beam just after it lets loose
allows us to determine the translational acceleration of any point on the
beam using a = rα , where r is the distance between the pin and the point-
in-question.  In this case, that distance is L/2.  Using this information, we
get:

a = r α
   = [(1.7 m)/2] (6.11 rad/sec2)
   = 5.19 m/s2.

e.)  This is a conservation of energy problem.  The beam has potential
energy wrapped up in the fact that its center of mass will have fallen a ver-
tical distance equal to (L/2) sin 30o during the freefall.  That means that its
initial potential energy will be mbg(L/2) sin 30o while its final U will be zero.

The hanging mass also falls a vertical distance equal to L sin 30o.
The potential energy changes of both bodies (i.e., the beam and hanging

mass) must be taken into account if we are going to use conservation of
energy--the approach of choice whenever we are looking for a velocity-type
variable.

Assuming we approach the beam as though it were executing a pure
rotation about its pin, we can relate the change in the potential energy of
the system before the snip to the rotational kinetic energy of the beam about
the pin plus the translational kinetic energy of the hanging mass just as the
beam becomes horizontal.  Using that approach:

 ∑ KE1 +                          ∑ U1                        +∑ Wext =       ∑ KE2                      + ∑ U2
0   + [mbg((L/2) sin 30o) + mhg(L sin 30o)] + 0    = [(1/2)mhv2 +(1/2)Ip ω2] +   0.

Noting that the velocity of a point on the beam will equal v = Rω , we can
write the velocity of the hanging mass as vh = (L)ω :

   mbg((L/2) sin 30o + mhg(L sin 30o) = (1/2)mh   vh
2  + (1/2)        Ip         ω2

    mbg((L/2) sin 30o + mhg(L sin 30o) = (1/2)mh[Lω ]2 + (1/2)[(1/3)mbL2] ω2.

Putting in the numbers while eliminating the units (for space), we get:

      (7)(9.8)(.85)(.5) + (3)(9.8)(1.7)(.5) = .5(3)(1.72)ω2 + .5(.33)(7)(1.7)2 ω2

⇒    ω  = 2.62 rad/sec.
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f.)  The translational velocity of the center of mass will be:

v = (L/2) ω
   = [(1.7 m)/2](2.62 rad/sec)
   = 2.23 m/s.

g.)  Angular momentum is defined rotationally as L = Iω , where I is the
TOTAL moment of inertia for the beam and hanging mass about the pin, and
the fact that the length of the beam has been defined as L turns out to be a
really, really bad choice of variables (it's the same as angular momentum).
Remembering that Itot,pin = 15.4 kg.m2/s, we get:

L = I ω
    = [15.4](2.62 rad/sec)
    = 40.35 kg.m2/s.

h.)  Angular momentum is conserved if and only if all the torques
acting on the system are internal (i.e., are the consequence of the
interaction of the various parts of the system).  Gravity is an external force
which means that any torque it produces on the beam will be an external
torque.  In short, angular momentum should not be conserved.

(This should be obvious given the fact that the beam is accelerating
angularly).

9.4)  The merry-go-round's mass is mm = 225 kg while each child's mass is
mc = 35 kg.  The radius of the merry-go-round is R = 2.5 meters and its angular

velocity is ω 1 = .8 radians/second when the kids climb on.

a.)  An angular velocity of ω 1 = .8 rad/sec produces a translational

velocity of rω  = (2.5 m)(.8 rad/sec) = 2 m/s at the edge of the merry-go-round
(i.e., where the children are when they first jump on).  Also, the moment of
inertia of one child when he or she first jumps onto the merry-go-round is
Ic,1 = mcR

2 = (35 kg)(2.5 m)2 = 218.75kg.m2 while the moment of inertia of
the merry-go-round itself is assumed to be that of a disk and is equal to Im

= (1/2)mmR2 = .5(225 kg)(2.5 m)2 = 703 kg.m2.  Using conservation of

energy, we can write:
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          ∑ KE1 +    ∑ U1 +    ∑ Wext    =                ∑ KE2                   + ∑ U2
     0    +      0    + 3[(RF) ∆θ ]  = [3(1/2)Icω2

2 +(1/2)Imω2
2] +    0.

Note:  Γ one kid on mgr = RF sin 90o.  The counterpart to F.d for rotational

motion is ΓΓ . ∆θθ, so the three kids do 3[(RF) ∆θ ] worth of extra work on the m.g.r.

Solving, we get:

 3(2.5 m)(15 nt)∆θ  = [3(.5)(218.75 kg.m2)(.8 rad/s)2 + .5(703 kg.m2)(.8 r/s)2]
   ⇒     ∆θ  = 3.87 radians.

Note that the relationship between angular displacement and linear
displacement is:

      ∆ s = R ∆θ
= (3.87 rad)(2.5 m/rad)
= 9.68 meters.

b.)  Once the kids have climbed aboard, the torques acting on the
system are all internal.  That is, they are due to the interaction of the
system's parts (the kids act on the merry-go-round while the merry-go-
round acts on the kids).  That means we can use the conservation of angular
momentum:

            L1,tot = L2,tot
Lm,1        +              Lc,1             =              Lm,2      +            Lc,2

         Im              ω1    + (      Ic,1           ω1   )  =         Im          ω2  + [        Ic,2         ω2]

  (703 kg.m2)(.8 r/s) + (656 kg.m2)(.8 r/s) = (703 kg.m2)(ω2) + [3(35 kg)(1 m)2 ω2]
⇒     ω2 = 1.35 rad/sec and
⇒      v2 = rω

    = (1 m/rad)(1.346 rad/sec)
              = 1.35 m/s.

c.)  As there are no external torques, the angular momentum should be
conserved.

Also, the forces acting on the system are internal so the total
momentum of the system will be conserved as the children move toward the
merry-go-round's center.  It should be noted, though, that this isn't a very



546

side view

mg

T

useful fact as far as problem-solving goes.  The addition of the momentum
components of the children's motion at the beginning and at any time
thereafter will be zero.

d.)  The forces being exerted on the system are not
conservative (the kids burn chemical energy as they move
on the merry-go-round), so energy is not conserved.

e.)  We have already deduced that energy should not be
conserved.  Let's see if we were right by calculating the
energy in the system just after the kids jumped onto the
merry-go-round and the energy once they reached the r = 1
meter point:

  KE1 =           KEc,1             +              KEm,1
=      (1/2)mc,1v1

2       +          (1/2)Im ω1
2

= .5[3(35 kg)](2 m/s)2 + .5(703 kg.m2)(.8 r/s)2

= 435 joules.

  KE2 = KEc,2 + KEm,2
=      (1/2)mc,2v2

2          +           (1/2)Im ω2
2

= .5[3(35 kg)](1.35 m/s)2 + .5(703 kg.m2)(1.35 r/s)2

= 736.3 joules.

Energy is obviously not conserved.
9.5)  Among other reasons, this problem was designed to allow you to see

that either the pure rotation or the rotation about the center of mass plus
translation of the center of mass approaches will work when dealing with either a
Newton's Second Law or conservation of energy problem.  An f.b.d. for the problem
is shown to the right.

a.)  Analyzing the wheel problem from a rotation about the center of
mass plus translation of the center of mass approach:

 This is a N.S.L. problem.  We will begin by summing the torques about the
center of mass:

  ∑ Γ cm :

       Tra = Icmα                     (Equation A).
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We have two unknowns here; we need another equation.  Consider the sum
of the forces in the vertical:

  ∑ Fv :

T - mg = -ma
 = -m(ra α)

           ⇒     T = mg - mra α               (Equation B).

Putting Equations A and B together:

Tra = Icmα
        ⇒   (mg - mra α)ra = Icmα

⇒     α = (mgra)/(Icm + mra
2)

            = [(.6 kg)(9.8 m/s2)(.015 m)]/[(1.2x10-4 kg.m2) + (.6 kg)(.015)2]
        = 346 rad/sec2.

b.)  We have to use the Parallel Axis Theorem to determine the moment
of inertia about the new axis.  Doing so yields:

Ia =           Icm             +    m         h2

               = (1.2x10-4 kg.m2) + (.6 kg)(.015 m)2

               = 2.55x10-4 kg.m2.
c.)  Analyzing the wheel problem from a pure rotation approach:

 This is a N.S.L. problem.  We will begin by summing the torques about the
axis .015 meters from the center of mass (call this Point P).

  ∑ Γ a :

       (mg)ra = Ia α.

We determined Ia in Part b, so all we have to do is solve for α :

α = (mgra)/Ia
               = [(.6 kg)(9.8 m/s2)(.015 m)]/(2.55x10-4 kg.m2)

           = 346 rad/sec2.

Great jumping Huzzahs!  Parts a and c match.  Both approaches work.
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d.)  This is a conservation of energy problem.  Major note:  Work
requires that a force act through a distance.  Tension acts at the one point
on the disk that isn't moving--it acts at the instantaneously stationary point
about which the disk rotates.  As such, tension acts through no distance and
does no work.

--from the pure rotation  approach:

∑ KE1 +        ∑ U1                  +      ∑ Wext     =             ∑ KE2                  + ∑ U2
0       +         mgd                   +          0         =           (1/2)Ia ω2            +    0

  0   + (.6 kg)(9.8 m/s2)(.18 m) +       0            = .5(2.55x10-4 kg.m2)ω2 +  0
⇒     ω  = 91.1 rad/sec.

--from the rotation about the center of mass plus translation of the center of
mass approach, noting that vcm = raω :

∑ KE1  +    ∑ U1            +  ∑ Wext  =                              ∑ KE2                                          + ∑ U2
 0          +     mgd          +        0    =  [         (1/2)Icmω2          +     (1/2)mvcm

2        ]    +    0

    0 + (.6 kg)(9.8 m/s2)(.18 m) + 0 = [.5(1.2x10-4 kg.m2)ω2 + .5(.6 kg)[(.015 m)ω ]2] +   0
   ⇒      ω  = 91.1 rad/sec.

Again, we get the same answer no matter which approach we use.
e.)  This is trivial, given the fact that you know the angular velocity

calculated in Part d.

vcm = raω
       = (.015 m/rad)(91.1 rad/sec)
       = 1.37 m/s.

9.6)
a.)  As the force per unit length function is ξ  = kx, it makes sense that k

times ξ  must have the units newtons per meter.  This will be the case if k
has the units nt/m2.

b.)  This is a N.S.L. problem.  The moment of inertia of a rod about one
end is (1/3)mL2, where m is the rod's mass and L is its length.  Since a
beam is simply a squared off rod, we will take the moment of inertia of the
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x

differential force on beam

= (kx) dx 

dF =   dx 

dx

beam about its pin to be (1/3)mL2.  There are two torques acting about the
pin.  To do the problem we need to determine those torques.

--The magnitude of the torque about the pin due to the beam's weight
acting at the beam's center of mass (i.e., at L/2) is:

            Γmg = (mg)(L/2) sin 90o.

--The magnitude of the torque about the pin due to the differential bits
of force acting downward on the beam along its length is more difficult to
determine.  To do so, follow along while considering the figure below.

--The magnitude of the differential force dF acting over a
differential length dx applied a distance x meters from the pin will be:

dF = ξ  dx
      = (kx) dx.

--The magnitude of the differential torque   dΓ  about the pin applied
by the differential force dF is:

d Γ  =   r       F     sin 90o

      =  x  (kx dx)   (1)
      = kx2 dx.

--The net torque about the
pin will be the sum of the
differential torques (i.e., those
applied due to the presence of
the force distributed along the
beam's length) and the torque
due to gravity.  Remembering
that the moment of inertia
about the beam's pin is Ipin =

(1/3)mL2:
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9.7)
a.)  This is a collision problem.  Energy is not conserved through the

collision because non-conservative forces act during the collision and
because the collision was not close enough to being lossless to be
approximated as elastic.  Momentum is not conserved because the pin
applies an external force to the rod.  Angular momentum is conserved as
there are no external torques (the external force at the pin applies no
torque to the system because the pin force is applied at the axis of rotation).

As the rod is massless, we can treat all of the masses in the system as
point masses.  We know that there are two ways to calculate angular
momentum (i.e., by using the magnitude of rx(mv) or by using Iω ), and we
know that the moment of inertia of a point mass is mr2 (this means the total
moment of inertia of the system is m1(d/2)2 + 2m2(d/2)2 = (m1 + 2m2)(d/2)2).
With all of this, we can write:

             ∑ Lo                =          ∑ Lf
            Lwad,o      + 2Lmass,o  =             Itot                ω1

          m1vo(d/2) sin 90o +      0        = [(m1 + 2m2)(d/2)2] ω1.
Plugging in the numbers, we get:

(.9 kg)(2.8 m/s)(1.2/2 m) sin 90o = [(.9 kg +2(2 kg))(1.2/2 m)2]ω1 
         ⇒    ω1 = .857 rad/sec.

       ⇒     vat ends = (d/2) ω1
         = (1.2/2 m)(.857 rad/sec)
         = .514 m/s.

b.)  As there is essentially no potential energy change through the
collision, the total energy change will be wrapped up in the kinetic energy
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h

FIGURE IV

just after
 the collision

   swings to
final position

d/2

0 = π + 0
   = π + sin   [h/(d/2)]

0 = sin   [h/(d/2)]-1

-1

π

0

difference.  The initial kinetic energy is all translational, being associated
with the wad.  The final kinetic energy can be treated as purely rotational.
Doing so yields an energy difference of:

                  ∆KE =                 KEafter            -      KEbef
                = (1/2)           Itot               ω1

2 - (1/2)(m1)vo
2

                     =  .5 [(m1 + 2m2)(d/2)2] ω1
2 -   .5(m1)vo

2.

Putting in the numbers we get:

    ∆KE = .5[(.9 kg +2(2 kg))(1.2/2 m)2](.857 rad/sec)2 - .5(.9 kg)(2.8 m/s)2

  = -2.884 joules    (energy is lost).

c.)  The net angular displacement of the system can be determined
using conservation of energy for the motion after the collision.  In fact, the
symmetry of the problem makes the calculation particularly easy as the
potential energy picked up by the right mass in its transit is equal to the
potential energy lost by the left mass.  As such, the only potential energy
gain will be associated with the position-change of the wad.  That means:

             ∑ KE1      +  ∑ U1 + ∑ Wext = ∑ KE2 +  ∑ U2
         (1/2)Itot ω1

2 +     0    +     0       =     0      + m1gh.

where h is the vertical distance above the wad's initial position.  Solving for
h yields:

       h = (1/2)Itot ω1
2/(m1g)

= (1/2)[(.9 kg +2(2 kg))(1.2/2 m)2](.857 rad/sec)2 / [(.9 kg)(9.8 m/s2]
= .073 meters.

With h, we can form a right triangle
whose hypotenuse is d/2 = .6 meters
and whose opposite side is h = .073
meters (see the triangle formed in
Figure IV on the previous page).
Taking the inverse sine yields an
angle of .122 radians.  That means
the rod's net angular displacement
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will be  radians plus .122 radians, or 3.26 radians.

Note:  As we know the energy lost from Part b, we could have used the
modified conservation of energy equation through the collision.  Doing so would
have yielded:

 ∑ KEo            +   ∑ Uo +  ∑ Wext   = ∑ KE1 +  ∑ U1
        (1/2)m1vo

2         +      0    + (-2.884 j) =    0      +  m1gh

   ⇒    (1/2)(.9 kg)(2.8 m/s)2 +         (-2.884 j)        =     (.9 kg)(9.8 m/s2)h
⇒     h = .073 meters.

9.8)  This obviously has within it a collision problem.  Through the collision,
energy is not conserved because the forces involved in the collision are
undoubtedly non-conservative and because the problem's author has not deemed it
necessary to imbue the collision with the magical label of elastic.  Momentum is
not conserved due to the fact that an external force is provided by the pin.
Angular momentum is conserved because the external force at the pin produces no
torque on the system.

If we can determine the amount of energy there is in the system just after
the collision, we can use conservation of energy to determine the rise of the stick's
center of mass after the collision and, from that, the final angle of the stick. As the
conservation of angular momentum will allow us to determine the angular velocity
of the system just after the collision and, with that, the energy in the system just
after the collision, we will begin there.

a.)  Assume the before-collision velocity of the block (i.e., after free
falling to the bottom of the incline) is v1 and the after-collision angular
velocity of the stick is ω 2.  Also, assume the block stays stationary just
after the collision.  With all that, the angular momentum about the pin is:

Lbefore            =              Lafter
       Lblock,bef      + Lrod,bef  =    Lrod,aft   + Lblock,aft
     mv1d sin 90o +      0       =   Ip,rod  ω2 +      0

  = [(1/3)(5m)d2]ω2
     ⇒      ω2 = (3/5)v1/d.

The problem here?  We don't know what v1 is.  To determine that
quantity, use conservation of energy during the block's slide down the
frictionless incline.  Doing so yields:



Solutions--Ch. 9  (Rotational Motion II)

553

FIGURE V

center of 
   mass

Note that if the mass had 
    stuck, its increase in 
  vertical position would 
          have been 2h!

0
d/2

h

d/2
(d/2) cos 0

h = d/2 - (d/2) cos 0
   = (d/2) (1 - cos 0)

   ∑KEo  +   ∑Uo     + ∑Wext =   ∑KE1     + ∑U1
      0      + mg(.4d)  +    0      = (1/2)mv1

2 +    0

  ⇒    v1 = [2g(.4d)]1/2

    =2.8(d)1/2.

With v1, the angular velocity of the stick just after the collision becomes:

      ω2 = (3/5)v1/d

     = (3/5)[2.8(d)1/2/d]
= 1.68/(d)1/2.

We are now in a position to use conservation of energy from the time
just after the collision to the time when the stick gets to the top of its
motion (see Figure V).  Defining the position of both the center of mass of
the stick and the position of the block just after the collision to be the
potential energy equals zero level for each object, we can write:

∑KE2               +           ∑U2          + ∑Wext =          ∑KE3          +         ∑U3
[KE2,bl +    KE2,st   ]  +    [U2,bl + U2,st] + ∑Wext = [KE3,bl + KE3,st] + [U3,bl + U3,st]

[    0     + (1/2)Ip ω2
2 ] + [  0       +    0    ] +    0     = [   0       +    0     ] + [    0     +  (5m)gh ].

Solving:
          ⇒         .5       Ip,st                  ω2

2    =  (5m) g            h

          .5[(1/3)(5m)d2] [1.68/(d)1/2]2 = (5m) g [(d/2)(1 - cosθ )]
           ⇒     θ  = .44 radians or 25.3o.

b.)  Assume the block adheres to
the stick after the collision.  Assume
also that the before-collision velocity
of the block (i.e., after free falling to
the bottom of the incline) is v1, the
block's moment of inertia about the
pin is md2, and the after-collision
angular velocity of both the block and
stick is ω 2.  With all this, we can
write:
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       Lbefore             =              Lafter
     Lblock,bef     + Lrod,bef  =   Lrod,aft   + Lblock,aft
  mv1d sin 90o +      0       = Ipin,rodω2 + Ip,bl ω2 

      ⇒     mv1d = [(1/3)(5m)d2 + md2] ω2.

Canceling d's and m's and simplifying, we get:

         ω2 = .375v1/d.

What is v1?  As derived in Part a:

v1 = 2.8d1/2.

With v1, the angular velocity of the stick just after the collision becomes:

ω2 = .375     v1     /d

     = .375[2.8(d)1/2]/d
     = 1.05/d1/2.

We are now in a position to use conservation of energy from the time
just after the collision to the time when the stick gets to the top of its
motion (Figure V still captures the spirit of this calculation).  Defining the
position of the center of mass of the meter stick and the position of the block
just after the collision to be the potential energy equals zero levels for each
object, remembering that the moment of inertia of the block is md2, and
noting that if the stick's center of mass rises a distance h, the block rises a
distance 2h (see Figure V), we can write:

∑KE2              +  ∑U2 + ∑Wext  =           ∑KE3         +            ∑U3
 [KE2,bl     +  KE2,st ] +    0     +     0      = [KE3,bl + KE3,st] + [U3,bl    +    U3,st ]

 [.5(md2)ω2
2+ .5Ip ω2

2] +    0   +     0      =  [   0      +   0      ] + [mg(2h) +  (5m)gh ].

Noting that the stick's moment of inertia about the pin is Ip = (1/3)(5m)d2 =

(5/3)md2, we can simplify to get:

 .5md2 ω2
2 + .5[(5/3)md2]ω2

2 = mg[2(d/2)(1 - cos θ )] + (5m)g[(d/2)(1 - cos θ )]

      ⇒     [.5md2 + (5/6)md2]ω2
2 = [2mg + (5m)g] [(d/2)(1 - cos θ )]

                        ⇒     1.33md2 ω2
2 = (7/2)mgd(1 - cos θ )].
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f.b.d. on masses while in contact
 (ignoring forces acting at pins)

FIGURE VI

avgf

avgf

change of motion
occurs over time 
              t 

disk 1
(radius r, 
   mass m,
      I = .5mr  )2

disk 2
(radius R, 
   mass M,
      I = .5MR  )2

Using ω 2 = 1.05/d1/2, we find:

  1.33md2[1.05/d1/2]2 = (7/2)mgd - (7/2)mgd cos θ .

Canceling m's and the d's, we get:

        1.33[1.052] = (7/2)g - (7/2)g cos θ
     ⇒     θ  = .293 radians or 16.8o.

9.9)  This is a slippage
problem in which nothing is con-
served.  Approach such prob-
lems with N.S.L.  Treat the
frictional force involved as an
average, and define the time it
takes favg to bring the two bod-
ies into a pure roll as ∆t.

The f.b.d. for the situation
is shown in Figure VI to the
right.
Summing the torques acting on
the small mass, we get:
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In doing a similar summation on the large disk, we will have to unembed
the required negative sign inherent within the angular velocity term (we didn't
have to do that for m because its angular velocities were both positive and the
required negative sign was provided by the fact that ω o > ω 3).  That calculation
yields:



556

 
  
∑ Γ cm,2 :
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Adding Equations A and B yields:

   0 = .5mr ω3 - .5mr ωo + .5MRω4.

We need a way to relate ω 3 to ω 4.  This can be done by noting that when the
disks are finally rolling without slippage, the translational velocity of each disk at
the point of contact must be the same (otherwise, there would be slippage).  That
means:

     v3,edge = rω3 = V4,edge = Rω4
            ⇒     ω4 = (r/R)ω3.

Using this, we can write:
     0 = .5mrω3 - .5mr ωo + .5MRω4

       ⇒     0 = .5mrω3 - .5mr ωo + .5MR(r/R)ω3

⇒     ω3 = 
  

m
(m + M)

wo.


